Personality and Inborn Talents DNA Report

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>3a</td>
<td>DNA Assessment Report - Overall</td>
</tr>
<tr>
<td>3b</td>
<td>DNA Assessment Report - Advice</td>
</tr>
<tr>
<td>4</td>
<td>Appendix A- How To Read the DNA Report</td>
</tr>
<tr>
<td>5</td>
<td>Appendix B - Glossary</td>
</tr>
<tr>
<td>6</td>
<td>Appendix C - References</td>
</tr>
</tbody>
</table>

This DNA report is NOT diagnostic. Its content is for informational purposes only and should NOT replace any diagnosis, advice, or treatment provided by a certified Health Professional.
1. Introduction

Personality and Inborn Talents DNA Report

Your Personality and Inborn Talents DNA Report contains your personal results with regards to the specific DNA variations detected, which are likely to be related to certain psychological traits and abilities that may develop under appropriate conditions to charismas.

This DNA report may help you have a better understanding of your inner-selves, and could also be indicative of specific actions needed to achieve the optimal psychological wellbeing.

Note that the nature of this DNA report is not diagnostic. You will find out if you have a genetic predisposition to certain defects/advantages, but whether you actually develop these depends also on lifestyle and environmental factors.
3a. DNA Assessment Report - Overall

Personality Traits - Impulsiveness - Taking Risky Decisions
Personality Traits - Social Stress Response - Anxiety
Personality Traits - Hyperactivity/attention Control
Personality Traits - Aggressiveness
Personality Traits - Social Behavior & Relationships
Personality Traits - Harm Avoidance
Inborn Talents - Intelligence (IQ)
Inborn Talents - Working Memory Performance
Inborn Talents - Educational Attainment
Inborn Talents - Verbal Creativity
Inborn Talents - Numeric & Figural Creativity
Vulnerability To Addictions - Smoking
Vulnerability To Addictions - Alcohol
Vulnerability To Addictions - Food (hyperphagia)
Vulnerability To Addictions - Caffeine

This DNA report is NOT diagnostic. Its content is for informational purposes only and should NOT replace any diagnosis, advice, or treatment provided by a certified Health Professional.
Personality Traits - Social Stress Response - Anxiety

Stress in life nowadays can be caused by so many reasons. The competitive social environment gives rise to problems relating to financial, work-employment and relationships issues. Even children may be exposed to situations that can cause them stress, either due to issues within the family or because they need to deal with several tasks accomplishment. Apart from the negative effect that the increased and chronic stress can have on managing responsibilities and dealing with difficult situations, it can have serious consequences in health status. Despite all of us experience stress conditions in our everyday lives, it is obvious that we do not respond the same and genes play an important role for these differences. If it is necessary for the general population to manage stress, one can imagine how extremely important that is for people who are more vulnerable to experience high anxiety and stress.
3a. DNA Assessment Report - Overall

Personality Traits - Social Stress Response - Anxiety

DNA Results:

This overall profile, based on the specific DNA variations detected, is likely to be associated with increased anxiety behavior. Individuals may be more vulnerable to stress.

![Overall Category Effect](image)

<table>
<thead>
<tr>
<th>Gene</th>
<th>DNA Variation</th>
<th>Potential Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMT</td>
<td>A:A</td>
<td>- +</td>
</tr>
<tr>
<td>OXTR</td>
<td>A:A</td>
<td>- +</td>
</tr>
<tr>
<td>TPH2</td>
<td>G:G</td>
<td>- +</td>
</tr>
</tbody>
</table>

This DNA report is NOT diagnostic. Its content is for informational purposes only and should NOT replace any diagnosis, advice, or treatment provided by a certified Health Professional.
<table>
<thead>
<tr>
<th>Gene</th>
<th>DNA Variation</th>
<th>Potential Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPY (V.2)</td>
<td>T:T</td>
<td>-</td>
</tr>
<tr>
<td>HTR1A</td>
<td>G:G</td>
<td>-</td>
</tr>
<tr>
<td>SLC6A4/5HTT</td>
<td>INS:INS</td>
<td>-</td>
</tr>
<tr>
<td>TPH1 (V.1)</td>
<td>T:T</td>
<td>+</td>
</tr>
</tbody>
</table>

This DNA report is NOT diagnostic. Its content is for informational purposes only and should NOT replace any diagnosis, advice, or treatment provided by a certified Health Professional.
Personality Traits - Social Stress Response - Anxiety

The advice you are provided with regards to the potential association of the genetic background with “Social Stress Response-Anxiety”, is only for informational purposes. Since the results of this DNA report are NOT predicting - in any case- with certainty that you have/will develop the specific trait, you should consider this advice only being informational.

It is a common truth, that sometimes stress can be beneficial producing a boost that provides the drive and energy to help you get through situations like exams or work deadlines. However, in extreme amounts it may lead to serious health consequences. Finding positive and healthy ways to manage the expression of stress can lead to gradual reduction of these negative health consequences and help you feel calmer and healthier. Everyone is different, and so are the ways they choose to manage their stress. Below, you can find some healthy techniques to reduce your stress levels in short or long term.

✓ Take a break: Sometimes it may seem really difficult to get away from a big work project, a family conflict or paying your fast growing bills. However, when you allow yourself to step away from it for a while, you automatically get the opportunity to do something else that may lead you to a new perspective of dealing with that issue and feel less overwhelmed. Remember, it is important not to avoid your stress (you have to pay your bills sooner or later), but take care of yourself and get a few minutes to rest and clear your mind.

✓ Exercise: There is a huge amount of research evidence regarding the benefits of exercise for our mind and body. Having a regular exercise routine is definitely the best way to obtain long term benefits. But even 20-minute walk, run, swim, or dance session in the midst of a stressful time can give you an immediate effect that can last for several hours.

✓ Smile and laugh: Our brains are interconnected with our emotions and facial expressions. When you are stressed, you often hold a lot of that stress in your face. So laughing and smiling can help you relieve some of that tension and improve your mood.

✓ Get social support: Pick up the phone and call a friend, send an email or even write a letter. When you share your feelings and thoughts with people you trust and whom can understand you, you can reduce your stress and feel much more relieved.

✓ Meditate: If you have never tried meditation before maybe it is time for you to do it. Meditation is a really good way to help your body and mind relax and focus. When you meditate, you clear away the information overload that builds up every day and contributes to your stress. So, just take your time, close your eyes and breath!

✓ Get expert advice: If using any of the above ways is not being helpful and your stress level is continuously affecting your daily functionality, do not hesitate to visit a health professional.
4. Appendix A- How To Read the DNA Report

In DNA report you will find information about the genetic profile of the individual tested for certain traits/characteristics. The DNA report is based on detection of an extensive panel of DNA variations (called polymorphisms), independently of sex and age of the individual tested.

The DNA report is categorized in sections for each of the trait examined. You will notice that in some cases a gene/genetic locus may be included in more than one sections and this is because our biological functions are so complex and interactive that a specific DNA variation often has an effect on various biological systems. Also in some cases you will notice that a category includes more than once the same gene/genetic locus analyzed. This is because a gene/genetic locus may have itself more than one different polymorphisms affecting a certain biological process.

For each of the traits examined, you are provided with the following information:

Description: A general and simple description of the trait so that you can understand the basic biology behind this feature.

DNA Results: An assessment of the potential personal genetic predisposition based on the DNA variations detected. This estimation for each category is drawn according to the effect of each DNA variant detected. This DNA report does NOT in any case provide you with a “diagnostic” result, nor identifies whether the individual tested has or not a specific trait. Thus the “conclusion” for each section just gives a relative estimation for possible tendencies.

Moreover we have designed our panels focusing mostly on traits for which environmental factors play a significant role, so that the genetic effects can be -in most cases- to a degree modifiable with implementation of the appropriate actions. Whether a person develops or not specific traits depends on complex interactions of environmental and genetic factors. For each trait you are shown a bar graph and the potential tendency towards a positive or negative effect. This estimation for each category is drawn according to the effect of each genetic variant analyzed.

An analysis of the DNA variations detected: For each of the gene/genetic locus you are shown the general biological effect, the specific DNA result, and a small bar chart showing the tendency of the specific DNA variation towards a positive or negative effect.

Advice: Whenever feasible you are provided with recommendations (nutritional, training or others) in cases the DNA "profile" for a specific trait/section of the DNA report is indicative of such advice.

Before and while reading the DNA report you should keep in mind the below key points:

The effects of each of the DNA variations detected may differ in terms of its “weight” on a specific biological process. In a specific category/trait DNA variants with a “positive” effect might not be overweight by those with a “negative” effect and thus the conclusion/estimation for the overall profile of this category may result to a “negative” tendency.

Any information obtained from this DNA report can be informative for potential biological effects but is neither descriptive nor predict with certainty what eventually happens or will happen.

The information provided in the DNA report should not be used to confirm or replace any medical diagnosis or status conferred by a Doctor, a Genetic Counselor, and in general any other health care professional.

Bar graphs explanation:

a. For each trait/category you are shown a bar graph with the signs of - and + at its edges, representing a potential negative (-) and potential positive tendency (+) respectively. The marker represents the personal overall assessment of the individual tested with regards to the specific trait/biological function. The colour of the marker is either red or green, representing the potential negative or positive effect respectively. The position of the marker closer to -edge or +edge, reflects the potential increased
tendency towards a potential negative or positive effect respectively.

examples:

- marker is coloured red and closer to - (negative effect): this overall profile regarding the DNA variations detected, is likely to be associated with a negative effect.

- marker is coloured green and closer to + (positive effect): this overall profile regarding the DNA variations detected, is likely to be associated with a positive effect.

* when the marker is positioned almost in the middle of bar, the tendency is defined by the colour of the marker (red or green) but the potential effect is not so strongly influenced by the DNA variations detected.

b. For each specific DNA variation detected you are shown a bar graph with the signs of - and + at its edges, representing a potential negative (-) and potential positive effect (+) respectively. The marker represents the assessment of the specific DNA variation potential effect. The colour of the marker is either red or green, representing the potential negative or positive effect respectively. The position of the marker closer to -edge or +edge, reflects the potential increased tendency towards a potential negative or positive effect respectively. When the marker is coloured light green, the potential effect of the specific DNA variation detected is assessed as neutral, not likely to be associated with neither positive or negative effect.

examples:

- marker is coloured red and closer to - (negative) effect: the specific DNA variation detected is likely to be associated with a negative effect.

- marker is coloured green and closer to + (positive) effect: the specific DNA variation detected is likely to be associated with a positive effect.

- marker is coloured light green and positioned in the middle of the bar: the specific DNA variation is likely to be associated with a "neutral" effect. It is more likely that the gene/protein function is not affected, but is rather normal.
5. Appendix B - Glossary

Apoptosis is the programmed death of cells. It is a mechanism of the organism to maintain a relative constant and normal number of cells. It also includes a cascade of biological processes that result to the death of a cell, when it is seriously damaged or infected by a virus.

Adipocyte is the main type of cells that compose adipose tissue and are also known as fat cells, or lipocytes. Their main function is to store energy in the form of fat.

Allele is one member of the pair that makes up a gene. Genes come in pairs and each allele is an alternative form of the gene.

Amino acids are components of proteins. Some are synthesized by the body (nonessential amino acids) and others must be obtained through diet (essential amino acids).

Antioxidant is a substance that can protect the cells from damages caused by conditions of oxidative stress.

β (beta)-pancreatic cells are a type of cells in pancreas which are responsible for the production and secretion of insulin.

BMD (Bone Mineral Density) is a measure of bone density. BMD test is used to define loss of bone mass and detect osteoporosis.

BMI (Body Mass Index) is a statistical measurement, used to estimate whether individuals have normal body weight. It compares weight and height based on the mathematic formula: BMI = mass (kg)/ height^2 (m^2)

Carcinogen is an agent (substance or radiation) that is involved in the development of cancer. Carcinogens can cause serious damage either to the DNA or the metabolic functions of cells.

Detoxification is the process of removing or inactivating toxic substances from the body. It is crucial for cells to maintain their ability to detoxify themselves from substances, which have the potential to cause serious damages.

DNA is a large molecule found in the nucleus of the cell. It contains the essential genetic information for the function of living organisms and has a significant role in the development of all traits that define our individuality. Its molecular structure in place has the shape of a double spiral, called double helix.

DNA sequence is a succession of nucleotides in the DNA molecule.

DNA testing utilizes techniques that enable scientists to define the DNA sequence or detect certain nucleotides at specific positions of the DNA.

Carbohydrate is a compound of carbon, hydrogen and oxygen. It is an important source of energy found in food.

Cell is the smallest functioning unit in the structure of an organism. It is enclosed by a membrane and contains a nucleus and organelles with certain functions (mitochondria, lysosomes, ribosomes).

Cell cycle is the series of events that result to cell division and cell proliferation. A process very important for development, growth, wound healing.
6. Appendix C - References

<table>
<thead>
<tr>
<th>Gene/Protein</th>
<th>Gene</th>
<th>References</th>
</tr>
</thead>
</table>